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An Invariant Measure Approach to the

Convergence of Stochastic Approximations with State Dependent Noise

by

Harold J. Kushner and Adam Shwartz

Abstract

A new method is presented for quickly getting the 4 -ordinary differen-

tial equatioi associated with the asymptotic properties of the stochastic
A

approximation. X1t = Xn " (or the projected algorithm for the

constrained problem). Either an - 0, or an  can be constant, in which case

the analis is on the sequence obtained when a - 0.) The method basically requires

that U nn- be Markov with a A-Feller"9transition function, but little else.

The simplest result requires that ifrn x, the corresponding noise process

-i&( 1:9 have a unique invariant measure; but the 'non-unique' case can

also be treated. No mixing condition is required, nor the construction of averaged

test functions, and f(.,.) need not be continuous, detailed analysis of the

way that (En} varies with {XnI is not required. For the class of sequences

treated, the conditions seem easier to verify than for other methods. There are

oxtensions to the non-Markov case, Two examples illustrate the power and ease of

use of the approach. Aside from the advantages of the method in treating standard

problems, it seems to be particularly useful for handling the type of iterative

algorithms which arise in adaptive communication theory, where the dynamics are

often discontinuous and the 'noise' is often state dependent due to the effects

of feedback. .
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1. Introduction

We consider stochastic approximations of the form

(.) Xn+1  Xn + an f(Xnn)n

where f(-,.) might be discontinuous, and the evolution of {C n depends on

{X n in the sense that, in general,

P{ n+l E AJi' i - n} _ P{t n+l E AEXVi i < n}.

We also treat the following "projected" version of (1.1). Let G be a bounded

set of the form G = {x : qi(x) < 0, 1 = 1, ... ,s}, where qi(-) are-continu-

ously 'fferentiable, and G is the closure of its interior. Let rG(y) denote

any closest point in G to y. Then the projected algorithm is

(1.2) Xn 7r (X + a f(X

Several so-called ordinary differential equations (ODE) methods for proving

convergence of (Xn} have been developed in recent years. ([I] to [4], and [5],

a more polished form of [41, with weaker conditions). The aim of these methods

is to get an ODE, which we write symbolically (for (1.1)) as

(1.3) x = Efx,) E f(x,C)Px(dE)

where(loosely speaking) px(.) is the stationary distribution of the sequence

{F , when X x. The idea is that {X I in (1.1) varies much more slowly
(n r n

(for large n) than n~ does and that some sort of averaging 'method or law
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of large numbers can be used to show that the asymptotic properties of (X n

are the same as those of (1.3), with a proper definition of P x H.

The methods in [11 to [3] are very useful, but are often difficult to

apply when the noise is state dependent, in the sense that the conditions are

often either hard to verify or do not hold in many important cases of interest.

Reference [4], [5] presented an "averaging method" which works quite well for

such problems, although one would like to avoid the work associated with con-

structing the "averaged test functions", and verifying the conditions on them.

The results in [4], [5] were for w. p. 1. convergence and also proved stability

and similar properties for {X I sequences which were not artificially bounded.

But generally, past methods required what is often a difficult analysis of

the way { n depend-s on {X n.

In this paper, the essential assumption for the validity of (1.3) is that

{En } depends on {X nI in such a way that if X n =x, a constant, then the

corresponding n~ } process possesses a unique stationary measure. Such an

assumption, either implicitly or explicitly, was used in much past work on

the 'state-dependent' noise case. If the stationary measures are not unique,

then a very similar result (2.9) holds. The conditions required here are

generally weaker and much easier to check and are useful even when the noise

does not depend on the state. As amply shown by the examples, the method is

easy to use. The techniques used are new for the class of problems treated.

We concentrate on the case a -~ 0. The same proofs work (even moren

easily) when an= a, a constant. Then, we get that the limit (as a --0)

of a(. a(.ofx ()satisfies (1.3) or (2.12) (in the comstiained case), where
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is the piecewise linear function with values X at na. The approach is
n

advantageous for treating many standard problems because the conditions are

relatively easy to verify. They are particularly useful for treating the type

of algorithms which appear in adaptive communication theory, where the dynamics

are often discontinuous and the noise is often state dependent owing to the role

of feedback. In such cases, one normally has a n a.n

In Section 2, we discuss the case where {X ,P nl, n > 1) is a Markov

process, or where the 'state-noise' pair can be 'Markovianized'. This is the

case which is most fully understood and easiest to use. A class of non-Markov

processes is dealt with in Section 3, and in Section 4 we illustrate the power

and ease of use of the method via two examples.

2. Limit Theorems with {X n n- } Markov.

In this section, we are concerned with the Markov case. In very many

applications the system is either Markovian or the actual physical noise can

be Markovianized, perhaps leading to an abstract valued process. Below, it

is assumed that {Xn} is either tight or lies in a compact set. This is not

a very serious restriction, since practical algorithms tend to use various

truncation devices. In any case, the use of the projection method (1.2)

guarantees the compactness when X lies in a Euclidean space.n

In Theorems 1 and 2, we allow X to take values in a compact metric
n

space, and in a complete separable metric space. The reason for this is

that it fits certaid 'abstract' applications where the metric is defined by a

weak topology, and which will be published separately. Also, it facilitates

A..
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the treatment of non-Markovian problems by 'Markovianizing' in an abstract space.

Some assumptions. Assuripti-ns rA?.4,6) and the first part of (A2.1) wil le

weakened later, as will the explicit form given for f(.,.).

A2.1. {X nn- 1, n > 01 is a Markov process with a (possibly non-

homogeneous) transition function P(x,C,n,,A) = P{(Xn+9, n+k I) E AIX n = XCn 1

The X takes values in a compact subset H of a metric and linear topological- n

space, and En takes values in S, a complete separable metric space. Both metrics

are assumed to be invariant.

A2.2. { nI is tight in S.

A2.3 For each Borel B c S, define the one step 'transition function'

Px (E lB) = P{n E BICn-I = E, Xn = x), and suppose that it does not depend on

t
n. Let P (,,1,) be weakly continuous in (x,E).X

For each x, we now define a Markov process { n(x), n > O} via the

transition function Px, -  where Px ( 'B) = f Px( ,i-kd ')Px(,kB)
is defined recursively.

A2.4. For each x E H, let { n(x), n > 01 have a unique invariant

measure pX(.), and let {Px(.), x E H} be tighttt

A2.5. lan+,La , 0< a 0, 1 a =n n n A n

A2.6, f(.) is bounded

A2.7. There is an integer c > 0 such that P (Cc+ldV)f(xC') is
Pf J

continuous in (x,E). It equals lir dP(x,,j-c,c,dx' dE')Px

lim E[f(Xi.,.)j X Xc=X,. C=)], where the limit is uniform on compact (x,E) sets.
j j j j-c-l_

t I.e., x(,1,dE')g(C) is continuous in (x,E) if g(.) is bounded and

continuous.
tt Normally, the tightness holds when (A2.2) holds, so the condition is not

restrictive.



Remark on (A2.7). If f(.,.) is continuous, then (A2.3) implies that we can

take c = 0. If c = 0, then the second sentence of (A2.7) is redundant. Even

if f(.,.) is not contin-l, s c = 0 i.s oFten enough to get the required sm ?h-

irR. See, for example, the applications in Section 4. Even if c > 0 is needed,

the second sentence of (A2.7) does not seem to be particularly restrictive, since

IX.-X._cj - 0 as j w implies that the measure in the lim expression is essen-

tially Px(&,c+l, -) for large j. The assumption is stated as it is for technical

reasons. In all applications that we are aware of now, if the first sentence of

(A2.7) holds, so does the second sentence.

Before introducing the next assumption, some additional notation is
n-1

required. Set tn ai , and m(t) = max {n:t n < t) for t > 0. Thus
0

m(tn) = n. Let 0 < 6n - 0 as n such that lim sup {a.: j.1 }/6n n 0.
n

For each n choose a sequence {m(t,n), 9=1,...} where m(n,l.) = n,
m(n L+l)-l

m(nt.l) > m(n,k), and such that a. = . modulo an lend' value of
m(n,) I n

a Thus (tm(nX+l)- tm(nl))/ 6n - 1 as n -, uniformly in k. For

notational convenience we henceforth suppress the n in m(t,n) and write

simply m(n,) = m . Let IK(& ) denote the indicator of the set where E E K.

For each w, Z, n define the measure on the Borel sets of S:

t1 I aj P{& j1 E .IXm ,Cm i

Define QK,(,t, n,') = Q(i,t,n,.)IK( ml). Thus, if m (w) K, the measure is

ihe zero measure. If S is not compact, then another assumption is needed.

First, we state it (A2.8b) and then discuss it. Either (A2.8a) or (A2.8b) will

be used. (A2.8b) always holds for N(K) = I if S is compact.

A2.8a. Either S is compact or {n is mutually independent.

n

or

A2.8b. For each compact K, there is an integer N(K) < - such

that for each T the set
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'{P(X (w). _( , i-. . r , E K); a l compact K, a!l nZ.i. Z ,

J 0m" . th t> ag > ,1, j-1 > N(K), t. - tn < T}

is tight.

Despite its seemingly complicated structure, (A2.8b) is quite natural

and is often easy to verify. See, for example, the application in Section 4b,

and the example below. It is motivated by the following consideration. If S

is not compact, it is possible that
N* "{P{ (j-1 I X M Z (m£ [ ) , m  - (W)}  j -- IAZ, P W

is not tight. Suppose for example that {n I is a stationary scalar valuedn

Gauss Markov process, not depending on {X n, and whose correlation function

p(.) tends to zero. Then the set (*) is not tight, since arbitrarily large

initial conditions m£ _(w) are allowed. But, if the m 1l(w) were all

confined to a bounded set, then (*) would be tight. As K increases, and

E m1 (w) E K, it might tke longer for the 'future' (j>mZ) to 'settle down'. This

is why we allow N(K) steps irthis 'settling down', where N(K) increases with K. In this

example, if K = { :ICI < k1, then any N(K) satisfying p(N(K))'k < constant

is satisfactory.

We now take some notation from [2]. Let x0 () denote the piecewise

linear interpolation of the function with value X at t . Define the shiftedn n

function xn( .) by xn(t) = x0 (t+tn), t > 0. Thus xn(o) = X, and the

asymptotic properties (as t - -) of any limit (as n - -) of {xn (.) yields

the asymptotic behavior of {Xn). The convergence of x n(.) to a limit x(,)

is in the sense of weak convergence of a sequence of probability measures. We

give the differential equations which x(-) satisfies. Using this differential

equation and the properties of weak convergence, one can analyze the asymptotic
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behavior of Xn  as in [2]. See that reference for details. Here, we con-

centrate or proving representations for the differential equations.

Theorem 1. Under (A2.1) to (A2.8), {x ()1 is tight and any weak limit

x(.) satisfies

(2.1) x = EXf(x,') = f f(x, )Px(d ) w.p.1,

where x(O) E H. The right hand side of (2.1) is continuous in x.

Proof. For notational simplicity, we do the proof only for the case where H

r
is a subset of a Euclidean space E . The details in the general case are

quite similar. What is actually proved in the general case is that for each

bounded real valued g(.) whose first two Frechet derivatives are continuous,

g(x(t)) - g(x(O)) = g (x(u))oEX (U)f(x(u),)du w.p.1.

The continuity is a consequence of the tightness and uniqueness (A2.4).

Now, by the tightness of {n ), we can choose 6 n 0 and non-decreas-fl n

ing compact K such that

P{& E K I 1 for any sequence {v ), and
V C Ot

m +N(Kn)

L a. o 0, uniformly in Z (where m, In), as n + =,

n m

and

l jn a a 0 as n+ .

Define the piecewise constant function f (w,t) by
n

m 141-1

" t) _ - ajE f(Xjp&j)IK R il on [t -t ,t t

mn t
and set Fno(,t) = fn(ws)ds. (To see why time is 'centered' about t,

0 nn fo n m-1 n

when working with the shifted function x n(.), recall that t -t = a. are
m n j=nI
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the break points of xn - and that xn (0) = x 0(t) = X n.) By (A2.6),

{xn( Fn(-), n > 0 is tight in C2r [0,-). Henceforth, we work with a weakly

convergent subsequence (called subsequence 1), also indexed by n, and with

limit (x(.),F(.)), or with a subsequence of it. We use Skorokhod imbedding

([7], Theorem 3.1.1) wherever convenient, and with no notational change. Thus,

n
we can assume where convenient, that W.p.1. (x (.)IF n .)) converges to

(x(.),F(.)) uniformly on bounded time intervals. Suppose that

(2.2) F(t) = JEXCU)f(x(u),C)du

and that for arbitrary k, t, s and s1 < s2... < S < t < t + s and bounded

and continuous h(.),

(2.3) Eh(x(s.),F(s.),j < k)[x(t+s)-x(t)-F(t+s)-F(t))] = 0.

Then M(t) = x(t) - x(0) - F(t) is a continuous martingale with M(0) = 0.

Since the quadratic variation of M(.) is zero (as can readily be shown),

M(t) H 0 w.p.1, and (2.1) holds. So, we only need to prove (2.2) and (2.3).

For smooth h(-),

m(t n+t+s)-l

(2.4) Eh(x (s.),Fn (s),j < k)[xn(t+s)-x t) - + ajff(Xi,)] nj n ~~ m(tn+t) jj n
n

(2.5) Eh(x n(s.),Fn (s),j < k)[x n(t+s)-xn M + (s)d s ] E t) C,

where e and e' go to zero as n *
n n

We now prove

(2.6) fnCs) * ExCs)f(x(s), ) in probability for each s.
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The limit (2.6) implies that F n() converges in measure to the right side of (2.2).

This and the weak convergence and (2.5) yield (2.3) with F(-) defined by (2.2).

So, only (2.6) needs to be proved.

Fix s and {m I such that s E [t -t n,t +1-tn) Let N denote

the null set on which (xn(.),Fn (.)) does not converge uniformly to (x(.),F(.))

on bounded intervals (under the Skorokhod imbedding). It is enough to show that

(for each s) each subsequence of subsequence 1 contains a further subsequence

for which the limit in (2.6) holds in probability. Select a subsequence of

subsequence 1, indexed also by n but called subsequence 2, such that

P{ m- E Kn , all large ni = 1. Let N(s) denote the exceptional null set.

Fix w € N0 U N(s), and extract a weakly convergent subsequence (a subsequence

of subsequence 2) of the set of measures (tight by (A2.8) and the properties

of 6n) Q = (w,,n,.): n E subsequence 2) s fixed as above}, with

limit P('. The limits in (2.7) below are on this subsequence. Let g(.) be

bounded and continuous and set G(x, ) = ]Px (,l,d&1)g(E1). Then by (A2.3,S,8)JI

m11 1a.lim fpI Xm9E mjt -m~ g(Q I Kn(Em 1)

n m X n n

S9+1 --1 a.
li f 'P(X 'm Emo l)m j- dt"dx Px, 1ldC)g(t)I K(tm -1)

n m9  n

(2.7)

lim Q (wZ,n,dE1)G(X )

JPIL(dV')G(x(s),' ') = (d')P x "l'd )g(E)"

I.e., for each n, choose m = mC(,n) such that s is in the indicated interval.
Keep in mind that Z dependl on n, and that we suppress the n-dependence of
m(,n) in the notation.

By the tightness of { j), we can always choose such a subsequence.

I ;_-
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Similarly, the limit in the first line is fP(d&)g(&). In going from the

second to the third line of (2.7), we used the facts that G(.,t') is con-

tinuous, uniformly on compact C', that sup IXj-Xm I + 0 as n - ,
+1  j>m t

that X * x(s) and the tightness of the set Q.
mt

Due to the arbitrariness of g(-), and the uniqueness (A2.4) and to

the equality of the last line of (2.7) with (P(dC)g(C), we have P (.) =

pX(S)(.). Again, by the uniqueness, the limit does not depend on the chosen

subsequence of Q. Thus, if w) f NO U N(s), QK (w,t,n,-) - pXS(.) weakly
n

as n , where n now indexes the second chosen 'subsequence 2' of the

theorem.

Using (A2.7) we now have (limits are on the 'subsequence 2')

m +l- 1 a.

tim j P(X, l, m, j-m, d4',dx)Px(W',l,d&)f(x,&)IKn (&m
n mk 6n M, mc-

m L+ -a. Xt nm-
n mt 6n1P( m C l1m92j-m -c,d&',dx')P(xl, ' ,j-c,c,dC,dX)Px(E,l~dE")f(x, ")Iv (C

n m~ n f m £ n m

N+17I a.
= lia _L P(X ,- ' ,j-m2 -cd'dx)Px g',c+l,dt)f(x, &)IKn(Em l)n Mk 6n M

(2.8)

= him I P(X , m.Pjmfcd I)IK a c (
n mi9  n f P(Xmjmt- n Pm

= lim QK (win,'4')Px(s ( ,c+ld&)f(x(s),C)
n fKn Xs

a J P(d')P (s)C ,c+ld&)f(x(s)FE)

f J pX(s)(dC)f(x(s),Q)
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In going from the 3rd to the 4th and then to the Sth line we used the continuity

in (xM) of JPx( ',c+l,dE)f(x',C) and the facts concerning convergence cited

below (2.7). In going from the next to last step to the last step, we used the

fact that P(.) X()(.) is an invariant measure for the transition function

PX(s) (',j,') for each x(s). The equality of the first and last lines of (2.8)

for w E N0 U N(s) yields the desired result (2.6) for 'subsequence 2'. But,

since each subsequence of subsequence 1 contains a further subsequence satisfy-

ing the requirements of subsequence 2 (but with perhaps a different N(s)) (2.6)

holds for subsequence 1 also. Furthermore, the limits for all possible sub-

sequence l's differ only in the initial condition x(O). Q.E.D.

Extension. In many problems of interest (see Section 4), the algorithm

(1.1) takes the form Xn+ I  Xn + a f n M, where

E[fn( n)IXii-l i <_n] nE Fn(Xnn-l),

and Fn (x,) - F(x,&), a continuous function, uniformly in (x,&) on

compact sets. Then Theorem 1 still holds. This extension is useful when

f (') depends on variables other than (X ,& ); for example, it might dependn n n

on a 'choice' or 'logical' variable Zn, where P(Zn=l XitiF11i < =

nnq(Xnn-l ), for some continuous function q(-).

Non unique pX(.). A very similar result to Theorem 1 can be obtained

when the uniqueness in (A2.4) is dropped. Let 9 x = {Px(.), c E some set

A(x)) denote the set of invariant measures for the transition function

P (,j". Assume that 9= (?, x E any compact set} is tight. For each x,
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9 x is convex and weakly compact. Define the set

C x) y:y PX(d)f(x,E), a E A(x)1.

Then C(x) is closed and convex. The sets _9x and CCx) are upper semi-

continuous in x in the Hausdorff topology (with the metrized weak topology

on the space of distributions and the metric topology on H). This is a

consequence of the fact that under the tightness of , if x n x
X X X n

and p n(.) . n, then {P N(I is tight, and all weak limits are in 9'x by (A2.3).

Theorem 2. Assume (A2.1)-(A2.8), with (A2.4) altered as above, then

{xn () is tight and any weak limit x(.) satisfies

(2.9) x E C(x) for almost all w,t.

Remarks on the proof. The proof is essentially the same as that of Theorem 1,

and we only remark on a couple of points. By the argument of Theorem 1, if

w f N0 U N(s) is fixed and n indexes a weakly convergent subsequence of

the set of measures Q- defined above (2.7), then we must have

a.+l- a.
(2.10) lim 1 - ( 9 & ,m2 , _.ntPdxImdl')f(x',t')K

n m 6n M t n -K n

= lim f(s)= ff(x(s), )Px(s)cd&) E C(x(s)
nfa

for some a E A(x(s)), perhaps depending on w and s and on the selected sub-

sequence. Under the weak convergence for the selected subsequence and the

Skorokhod imbedding, F n.) + F(.) (which is absolutely continuous) uniformly

on bounded time intervals w.p.1, but f n(s) does not necessarily converge in

probability to f(s) a F(s) as it did in Theorem 1. But, for each fixed



w N0  and each T < f fn (considered as a function on [0,T]) converges

(along any 'subsequence 1') to f(.) weakly when these functions are considered

as elements of LI[0,T]. Thus for each w N there are {8., i < n) such
n n -

that 0 < 8 0 n8 . 1, 0 as n for each i, and nif () f(.)nht0<_ n' i = ni ' i=

in the norm of L1(O,T]. This convergence, together with the limit (2.10), the

convexity and closure of C(x) and the upper semi-continuity cited above

Theorem 2 imply that f(s) E C(x(s)) for almost all (w,s).

The projection algorithm (1.2).

Recall the definition of 'TG from Section 1. Let (h(.)) denote

the (not necessarily unique) projection of the vector field h(.) onto G;

i.e.,

(2.11) (h(x)) = set of limits lim [w G(x+Ah(x))-x]/A.
A40

Theorem 3. Assume (1.2) and the conditions above it instead of (1.1),

and assume (A2.1) to (A2.8), except that Xn takes values in a Euclidean

space. Then {x n . is tight and if x(.) is the limit of a weakly convergent

subsequence, x(.) satisfies the 'projected' equation

(2.12) x = i(Exf(x,&)) for almost all w,t.

Recall the extension of Theorem 1 to the algorithm Xn+1 = Xn + an fn (w), cited

after Theorem 1. If w G (X n+an f n()) is used, then Theorem 3 holds with

x - w(ExF(x,C)).
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Remarks on the proof. The proof is quite similar to that of Theorem 1, and only

a few remarks will be made. Use the partition of (2, eqn.(5.3.4)] to write (1.2)

in the form

(2.13) Xn 1  Xn + an f(Xn, + andn

where andn = 'G(Xn+anf(Xn, n}) - (Xn+anf(Xn,&n)). In [2], andn  is termed

T . Using the notation of Theorem 1, define the piecewise constant function

d n(w,t) by
n

m
dn (w't) a d£ on [t 'tm -tn)

t -m  

and set Dn(wt) 0 .n(w5)d5 Then, as in Theorem 1, {xn(.),Fn(.),Dn(.))
0

is tight. Extract a convergent subsequence with limit (x(.),F(.),D(.)). Both

F(.) and D(.) are absolutely continuous and F(.) satisfies (2.2). Write

.. -f(.) = F(.) and define d(.) by

D(t) = fo d(s)ds.

Write

f(t) = 7(f(t)) + fCt), f(t) f(t) - IF(f(t)),

the f(.) term being a 'projection error'. By the method of Theorem 1,

(2.14) x(t) - x(O) - F(t) D(t) = 0 w.p.l.

x--E'f(x,&) + d +
(T) (i(t)) + i(t) + di(t), w.p.l.
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Using the ideas of (2, Section 5.3], it can be shown that -J f(s)ds = D(t).

This and (2.14) imply (2.12). We omit the rest of the details. We note only

that the proof of the last equality uses the factS that if Xn+ I E G, then dn

is in the cone -K(X n+), and that if x(t) E 3G, then f(t) in the cone

KCx(t)), where

K(x) = {y: y = qi  (x)(, for some set of . 0).
i:qi(x)=O X J

Unbounded f(.).

We will use

(A2.9) There are a K < - and a positive valued function d(.) such that

If(x, )j <K1fl+d(&)), and x takes values in the Euclidean space R . For some

i > 0, sup Ed( )lJ +a < ®.

Theorem 4. Under (A2.9), and the tightness of {Xn}, both {xn(.),

and {FnC.)) are tight in Cr[o,-).
n

4.Both xn(. and Fn(' are sums of terms of the types a f(X.,iA) and

a.E f(X.,&.), for j > m,, respectively. These are bounded by a K (l+d(&))

and aK g(l+E3 d(.)), respectively. But by (A2.9), both {d(C.)} and

E d(C.) t,j: j 1 m) are uniformly integrable, which implies the theorem.

Q.E.D.

,
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Given the tightness, the only. further impediment to the result of

Theorem 1 for the unbounded f(.,.) case, concerns the meaning of the integrals

in (2.8). A truncation and limit argument seems the most natural. We simply

take the following natural approach.

Suppose that there is a sequence ffL(x, ), L = 1,2,...,l each member

of which satisfies (A2.6,7), where c doesn't depend on L, and such that

EXfL(x,&) - E Xf(x,C) uniformly on any compact set, as L .Let (see (A2.9))

:f(x,E)J K(l+d(E)), and let fL(x,) = f(x,E) when d(C) < L. For each

m(t+T)
n

T < -, let E I a d(E.) I {d() > L - 0 as L , uniformly in n < m(t +T).
j=n - n

Then under (A2.1,2,3,4,5,8), the conclusion of Theorems 1 and 3 hold. The

condition of the next to last sentence is guaranteed by (A2.9) and also implies

the tightness.

3. The Non-Markov Case.

The ideas of the last section can be extended to some interesting non-

Markov systems where, loosely speaking, if Xn x (a constant) for all

-- < n < w, then {n I is stationary and has certain mixing properties. We

next state some assumptions, which are modifications of some in Section 2.

Then a general convergence theorem is proved. Lastly, it will be shown that

the assumptions hold in many .ases of interest.

In particular, in Theorem 8 we verify (A3.2,3) when {E I is not state
n

dependent and satisfies a type of *-mixing condition. This case is of interest,

since the non-Markov noise and discontinuous dynamics case is usually hard and

occurs frequently. In this 'non-state dependent' case, the measure Px(E,l,.) =P( ,I,)

below would not depend on x, and would equal the stationary conditional dis-
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tribution P{I 1 = 1 provided that this

stationary measure is weakly continuous in C.

A3.1. X n H, a compact metric space, and f(.) is bounded.

The limits in (A3.2) and (A3.3) are in the sense of probability.

A3.2. For each x, there is a transition function Px(,l,.) which

is weakly continuous in (x,F) and such that for each bounded and continuous

g(-), with G(x,C) = xCldC')g(&'),

lim [fP(dE[Xj 1  , u < n)g(0.) G(Xj,¢_I) 0

j -n--

A3.3. Define F(x,C) = ff(x,&?)Px(C,l,dC'). Then F(,.) is continuouspx

and

lim JP(d& Ijx¢SC ;X tulU < n)f(Xj,E) - F(Xi,4_I ] = 0.

A3.4. For the Markov process with transition function Px (E,j,.) (which is

obtained recursively from P x (E,l,.) as above (A2.4)), there is a unique in-

variant measure pX(.). The set S is compact. (Hence, {P (.), x E H) is tight.)

We define the measure Q(wvn,') similarly to that in Section 2: i.e., by

m -1

QIwJL~~dE~C a P(dEjIxuu.l u < n)g()

where g() is an arbitrary bounded measurable function. (Here, we use Ej in

the sum Q(.); in Theorem 1, E was used. The choice is unimportant and is

due to notational convenience.)

_____A *~-
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Theorem S. Assume (A3.1 to 4) and (A2.5,6). Then {x ()1 is tight

and the limit x(.) of any weakly convergent subsequence satisfies (2.1).

If (1.2) is used in lieu of (1.1) and the conditions above (1.2) hold, with

Xn  in some Euclidean space, then xn () is tight and the limit of any weakly

convergent subsequence satisfies (2.12).

Proof. The proof is close to that of Theorem 1 and we use the same

terminology, but with the measure Q(w,k,n,.) defined as above and tn satisfying

the conditions above (A2.8), and in the proof of Theorem 1. Since S is canpact the

r
truncation factor IK used in Theorem 1 is not required. In the proof, we take Xn E R

Euclidean r-space. The details in general are very similar to the details in

n -2r
this special case. Clearly {x (-),F n(.)) is tight in C [0,-). Extract a

weakly convergent subsequence (also indexed by n and called subsequence 1)

with limit x(.),F(.). We work with this sequence or subsequences of it,

henceforth. By the Skorokhod imbedding, there is a null set N0  such that the

limit can be taken to be uniform on bounded intervals, for w € N0.

Let g(.) be bounded and continuous.

By (A3.2), in getting the limit in probability (as n - o) of an expression of

the form

aj~ fP(d~j I dX IXu,& u, < m W E j

- u u- -

(3.1) fIS L l a- nP(d&j ldXj IXu, u, < m )P(d jlX j , j_lxuul, PE WEg(
i 1 11jl U1 u U<M
m n

we can substitute G(Xj,rj_) for JP(d jtj,jlXuulU <mW)g(C),

when a.. _ . Fix s. For each n, fix m = m(A,n) such that sE [t m-t n,t ml-t n).
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Under the Skorokhod imbedding EiG(Xj,&jI) G(x(S), jl)I - 0. Thus, by the

last three sentences

ElfQ(wkn,d)[g(&) G(x(s),¢)]I n 0.

Choose a subsequence (called subsequence 2) for which

JQ(w,Z,n,dC)[g() - G(x(s),&)] - 0 w.p.1

for a countable dense set of bounded and continuous g(.), hence for all

bounded and continuous g('). Denote the exceptional w-set by N(s). For

fixed w f N0 U N(s), choose a further subsequence (termed subsequence 3)

for which Q(w,t,n,-) converges weakly to some measure P (.).

Then

f (dE)g(&) = TP (d )G(x(s),E) = Ti (dE)P)(Fld)g'.

Thus, by uniqueness P (.)=PS(.), a result which does not depend on the

particular chosen subsequence 3. Hence Q(w,l,n,.) - PX(S)(.) weakly along

subsequence 2, for almost all w.

Using this last result and (A3.3), and a factorization similar to the

one used in (2.8), we get that

m+1-1 a.

(3.2) f fP(djdXj IXu, Eu 1 ,u < m )f(X,I.)
m Z n

* fPx(s)(d&)f(x(s),&)

in probability as n - - along subsequence 2. Hence (3.2) holds in probability as

n - - along subsequence 1.
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We omit the details for the projection algorithm. These use an adaptation

of the above method which is analogous to the modification of the proof of

Theorem 1 which is used in Theorem 3. Q.E.D.

Remark. Let Xn+ 1 = Xn + a f () replace (1.1), and suppose that there is a

continuous F(.) such that

E[fj(w)IXj, j _ ; X, u 1 , u < nJ - F(Xj, )- 0

as j - n -.- and n -- . Then the Theorem continues to hold.

We now examine (A3.2,3), under the following 4-mixing condition, where

the noise does not depend on the state.

A3.5. Let S be compact. Let 5, 9r0  and 9: denote the 0-algebras

which measure _j{Ej-l, <_m) and {C _ j  > m), resp. For any A E1, B E ,

~ an _10' n+m

IP(AB) - P(A)P(B)I < 4nP(A) and < 0nP(B), uniformly in m, where 0 < 0n+ 0.

The following result is well known.

Lemma 6. Let An+m E.'+7 A E m0, and assume (A3.S). Then as n

IPtA ly') - PIAn m119 0
PAn+ml O  P{An+m}P0

IP{Am_ n - P{Am11 P 0

EIP{A I flo+) - P{Am}IA < 0P{An+ml and < 4nP{Am}

n+m

EIP{A I. 0 }I - P{A IIIA < nP{A+I and < P{A
m
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Let (g.[ < 1 with gj bi measurable. Then as n c

P
E[gn~mlf.l] - Egn+ m  0

0

E[gmjn~] - Egm - 0,

where the convergences are uniform in {gj}, {AM,Am+n , and m.

Theorem 7. Assume (A3.S). Let gj be W measurable with IgjI < 1, and

let j > n. Then E(g* 9F n U J E[g. . ] 0 as j - n ,

j 0 j-1 0- as

uniformly in j, and {gj..

Proof. Let G and G E n The v . below are uniformly
j-1 0,n 0' n~j

bounded and ElV 1 I1 < 2 _ P{G } by Lemma 6. We have

1 f E[g[IrO U _ l]dP =G )gj dP

Gj_-l GO ,n Gj-l Go,n

=6 lEg[ Iglj]d P

j- 1 
IGO0,n

fG j 1  II b,n  J -

:II
(3.3) E ' g. EgI _Qj l] (P6Gond + vn i)dP

= li 16. -11 jl(IG0  .,i)dP

fG j.1l GO~ njI

=06331r d + f v n dP.

_ G .4,G ~ f ~
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Now, suppose that the theorem is false. Then there is a sequence of sets

H. ErO U _ and an e > 0 such that for some sequence IgjI and j -n
j,n 0 j-1

(3.4) H. {E~gjI5 U-F21 ] - E[gjjI -_]1dP >efH.0
J,n

(and/or < -c, we use (3.4) only for simplicity). For each 6 > 0, there

are sets Gi 1 E and Gi I n with i i=1,2 . .} disjoint and-1 j -1 0 0,n E-0 wt _,.

P{Hn AH < 6, where H = U[G' 0 GOn]. Now, re-do the calculation

(3.3) with Gj_ 1  and G0, n  superscripted by i, and the integrals summed

over i. For small enough 6 > 0, this yields a contradiction to (3.4), since

IEi v3 1 0 as n Q.E.D.

i :j-1

Theorem 8. Assume (A3.1,5). Let { j} not depend on {X.}; i.e., for

all j

P{d~jIu_l,Xu, u < j) = P{djjku_l, u < j).

Suppose that there is a measure P(&,l,.) on Borel sets of S such that

P(.,l,B) is measurable for each Borel B c S. For each bounded, real valued

and continuous g(.), let

g(= ) * fg(CI)P( ,l,d l) = G( ) for all &,

(3.5)

f~~~ ~ f~), . fPd Ijf(x,Ev)P(&,l,dv) = F(x, ) for each x and C,

where F(.,.) and G(.) are continuous. Then (A3.2,3) hold.

The proof follows from Theorem 7, by letting gj be either g(&j) or

f(x,cj ..

3 3



-23-

4. Examples

4a. Application to a Routing Problem.

To illustrate the power of the method, we consider the automata routing

example described in [8, Section 3]. Calls arrive at a transmitting or switch-

ing terminal at random, at discrete time instants n = 0,1,2,..., with

P{one call arrives at nth instant} = P, vi E (0,1), P{ > 1 call arrives at

n instant) = 0. From the terminal, there are two possible routings to the

th
destination, route 1 and route 2; the i route has N. independent lines1

and can thus handle up to N. calls simultaneously. Let [n, n+l) denote
1

th
the n interval of time. The duration of each call is a random variable

with a geometric distribution: P{call completed in the (n+l)st intervwlI

uncompleted at end of nth interval, route i used) = Xixi E (0,1). The

members of the double sequence of the interarrival times and call durations

are mutually independent. In [8], the "gain" per step was a constant, and a

detailed study was made of the rate of convergence. Here, we do a stochastic

approximation version; i.e., a n 0. But the case where an  a > 0 is

handled in the same way. Let {y n denote a sequence of random variables with

values in [0,1]. To get an unambiguous formulation, suppose that calls termi-

nating in the nth interval actually terminate at n + , and arrivals and route

assignments are at the instants 0,1,2,..... Define E = ( n'&2) = route
i

occupancy process (called X n in [8]), where En = number of lines of route i

occupied at time n . If a call arrives at instant n + 1, the automaton "flips

a coin", choosing route 1 with probability yn and route 2 with probability

(-y). If all lines of the chosen route i are occupied at instant (n+l),

then the call is switched to route j(j~i). If all lines of route j are also

occupied at instant (n+l)-, then the call is rejected, and disappears from the

system. The model can be generalized considerably, both in the number of lines
I

i ii

,~ U
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and switching nodes, and in the input and call length statistics. Let Jin

denote the indicator of the event {call arrives at n + 1, is assigned first to

route i and is accepted by route i}. The algorithm is (4.1), where

0 < a < 0 < I are truncation points, and yO E (a,a). The bar denotes truncation.

(4.1) Yn+ = Y + a(-Yn)J - anynJ2n

Here, P{E n+i ffy = y, = n is a continuous function of (y, ). The

Markov chain is {ynEn} not {XnE n-l. For each fixed y E [a,], {Cn(y),

n > 0} has a unique invariant measure PY(.), and E[J inlYV,,, < n] =

Fi(YnEn), where Fi(.,.) is a continuous function of y for each (discrete)C.

Define yn () as x () was defined. By Theorem 1 or 3 and the extension cited

after the Theorem statement we immediately get the correct ODE (which must be

satisfied by all the weak limits of {y n(.)M

(4.2) y = [(l-y)EYJIn - yEYJ 2n for y E (cB),

y(.) stops on first hitting a or 8.

Simple! No analysis of rates of convergence of n-step transition functions, etc.

is required. Also, no analysis of the x-dependence of the {n } or {C (X)} is

required. The model upon which the analysis is [8] was based appeared in [9].

4b. An adaptive guantizer. Efficient quantization of signals in telecommunica-

tions systems is of considerable current interest (e.g., of voice signals in

telephone systems). Let the signal process z(') be sampled at instants MA,

n = 0,1,..., and let the samples {z(nA)} be quantized and then transmitted.

Adaptive quantizers have been studied as a means to more efficient quantization

the quantization scale for 'large' signals, should be different from that for

'small' signals An adaptive quantizer studied in (10,11] takes roughly the
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following form. We use a n  , a constant. Let 0 < <<L
n 0 1 L-1L

0 = n I < 12 <." < nLP where the i, ni are real numbers. For a scaling

parameter y > 0, define the quantization function q(.). For z(nA) > 0, set

q(z(n)) = yni  if z(nA) E [ypi_l,yVi) and set q(-z) = -q(z). The parameter

y should vary with the signal power. To get the adaptive quantizer of concern,

fix real numbers 0 < M1 < ME <... < MC < 0, where MEC < 1, > 1, and set
1 2 LM<o 1 1

a E (0,1]. Let O< yt < yu < W. Then we adapt the scale y according to

E

(4.3) Yn 1 = (y:)SBBC , where B C =n  M ' if j z(nA)l E [yn4 -l' Yn0 )

We do an asymptotic analysis of the sequence yc(.), defined as the piecewise

linear interpolation of the function with values y at time nE. Let

C =  E0 [y2',yul.

Now define 1 < ' <."< "L' t1 < 0, k > 0, and a > 0 such that
E1-Ed

En < 1. Then set M. = (l+Ei)" B = I - ca. Then using y = y[l-Ea log y]+ 0(C2),

(4.4) C 1+bCnayC o E 2 Y
1 1;

2 YE

Assume further that Z() is a stationary (finite order) Gauss Markov

process with Coy Z(t) > 0 and let z(t) = h'Z(t), for some vector h 0. In

this example, the noise does not depend on the state and so the analysis is quite
simple, even though z(-) is not a bounded process. Define EF(y,z(O)) F(y).

Then F(y) has a unique zero y on (0,-), and F(y) is positive for y < y and

negative for y > y [8, Section 7]. In (8, Sections 7 to 9], there is a detailed

All ~-~ - A...
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investigation of the limit of [yn-y]//E. Here, we are only concerned with

the simpler question of the limit of y (.). For some c > 0,

EZ(o)F(y,z(nA+A+cA)) is continuous in Z(0),y and tends to F(y) in the mean,

uniformly in y E [yIyu], as c 4 -. This fact and the method of proof of

Theorem 1 or of Theorem 3 and the extension cited after the theorems implies

immediately that the weak limit of {yC(.)) satisfies (4.5).

(4.5) y = f(y), y(O) = YO if y E [yg,yu] ,

and if y [y,yu], y(.) stops on first hitting yI or yu
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